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SUMMARY

A computer algorithm has been developed for determining minimum-time
optimal control for continuous low-thrust propulsion systems operating in an
inverse-square gravity field. In the guidance procedure developed, instead
of using a linearized solution about a precomputed nominal trajectory, the
two-point boundary value variational problem is resolved at a number of updating
points throughout the trip with the present observed state supplying the new
initial boundary conditions. It is found that these updating points must be
more frequent as the trip progresses. The algorithm employs the implicit
finite-difference Newton-Raphson algorithm to descretize and solve the varia-
tional differential equations with the two-point boundary value problem as a
sequence of linear finite-difference equations. Although the algorithm requires
a substantial fraction of the core storage capacity to an IBM-T094 computer,
it may be possible that it could be adapted to an advanced on-board computer.

The algorithm has been applied in a guidance study involving a nominal
266-day minimum-time Earth-Mars trajectory where the planets are considered to
be massless points. The most important finding of this study is the high
sensitivity of the control to small guidance errors in the final phase of the
trip.

Applications of the algorithm to low-thrust planetocentric flight have
been limited to establishing nominal trajectories and associated control
programs. A discussion of the same problem in the time-varying field generated
by the sun and planets considered as point masses is also presented, including
the variational formulation and an adaptation of the algorithm to accommodate
variable mesh-point spacing. Finally, some recommendations for further research
in this area are given.
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INTRODUCTION

The practical problem of guidance of a space vehicle is concerned with
two questions: what is the present state (i.e., position and velocity); and
how should the spacecraft be controlled from the present state in order to
arrive at a given destination. Although the first guestion, the problem of
navigation, is by no means trivial or of minor importance, the present study
deals exclusively with the second.

The problem treated in the present study is the determination of optimum
control for a constant specific-impulse, power-limited space vehicle to accom-
plish rendezvous in an inverse-square central force field in minimum time.
Requiring continuous thrusting, the minimum-time operation of a low-thrust
vehicle is the limiting case of the constant-thrust, optimum (single or multiple)
coast mode of operation which maximizes payload for a fixed trip time. From
a guidance point of view, the two powered phases of constant thrust with coast
trajectories are treated as minimum-time problems (although the first phase
has additional complexity). This minimum-time problem has been successfully
solved for two regimes: (1) for a thrust acceleration of the order of one-
sixth the local gravity acceleration, corresponding to interplanetary flight;
and (2) for a local thrust-to-weight ratio of the order of one-thousandth,
corresponding to planetocentric escape and capture.

Unlike guidance schemes where the strategy is always given with respect to
a precomputed nominal trajectory, the current approach to the problem is to
resolve the complete variational system using the current observed state for
new boundary conditions. Referred to as updating-the-trajectory, this procedure
is repeated many times during the trip. Described in Ref. 1 and further devel-
oped in this report, the basic numerical method employed in this guidance
program is the implicit finite-difference Newton-Raphson algorithm. Briefly,
this algorithm substitutes a set of linear finite-difference equations for the
system of differential equations (Euler-lagrange equations and equations of
motion) which is solved (including boundary conditions) by applying a general-
ization of the classical Newton iteration to an approximate solution.

The method of second-variation guidance produces a new control, at each
application, which is a linearized solution about the precomputed nominal. It
is interesting to note that this corresponds roughly to a single iteration of
the Newton-Raphson scheme, i.e., each iteration produces the control which
would be the solution if the problem were linear. However, multiple iterations
can achieve solutions which are strikingly non-linear with respect to the
nominal as is shown in this report.

At this point, a few comments to qualitatively compare the problems of
low-thrust guidance and control with those for high thrust may be useful. In
one respect, the low-thrust guidance and control problems are simpler and less
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demanding on hardware. Whereas the propulsion time (and control time) of a
high-thrust space vehicle is & very small fraction of the total trip time, a
low-thrust vehicle usually has control over a major portion of the total trip.
Hence, while very small control errors are magnified into huge miss distances
in the high-thrust case, fairly large errors in control can be tolerated in
low-thrust space flight at least throughout the first half of the trip. On the
other hand, the low-thrust vehicle is severely limited in the magnitude of the
control that can be applied in any given small time period. For this reason,
the terminal guidance phase is an extremely critical period.

Finally, it should be emphasized that the scope of the study does not
include a computer simulation of low-thrust space flight; that is, no attempt
has been made to determine expected guidance errors in any statistical sense,
but rather sequences of possible errors have been assumed at a number of
updating points along the trajectories in the sample problems.
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VARTATIONAL EQUATIONS

In first-order form the equations of motion of a point mass subject to
constant thrust in an inverse-square gravity field are:

X o=y i=1,2,3 (3.1)

8, COS O X

. = — — . = 2 .2
Uy 1 + bt I'a 1 l; F) 3 (3 )

with the constraint on the direction cosines of the thrust wvector
Zcosaoq -1=0 (3.3)

i

Here the x, are cartesian coordinates, r is the radius, t is time, a, is the
initial thrust acceleration, and b is the fraction of initial mass expended
per unit time. Cos & are the direction cosines of the thrust-acceleration
vector. It is desired to determine the control o (t) which will minimize the
time between two given sets of boundary and transversality conditions. Such
an extremal must satisfy the Euler-lagrange equations of the calculus of
variations as well as the constraining equations 1, 2, and 3 above. The
Euler-lagrange equations can be determined from the variational Hamiltonian,

1

. cos 0. Xy O ;
H=:§nui+)‘;i';————i———t— +)\pcos?x‘ (3.4)
J ™ YT o i 1

Lei
i

where T, Ay, and Af are lagrange multipliers. The Hamiltonian must be
locally stationary with respect to the control. Therefore,

3
ch

a, sin o

=0=-MT3o3

- 2\¢sin oy cos o (3.5)

and

_ a,p
Ap = 5(T + bt) (3.6)
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Substituting (3.6) into (3.5) gives the control variables in terms of the
adjoint variables.

cos @ = M (3.7)
P
where p° = Z A2
1
The Euler-lagrange equations are now determined from Hamilton's
canonical egquations:
. oH 3H
)\_ T - ¢ T csme— .
i aul’ Uy a)\i (3 8)
oH dH
Ty = o Ky T e 3
1 Bxi’ 4 m (3.9)
L= - (3.10)
LN} - aH
= - 1 = .ll
Ay 1 = 3% (3.11)

The second two relations of equations (3.8) and (3.9) give the equations of
motion. Operating on the Hamiltonian as indicated in Equation (3.11) gives

.)\'1 + (lg - %rs—) I'_a =0 is= 1: 2} 3 (3'12)

where 3
~

S = Z,xi)\.i
=1

which are the Euler-lagrange equations written in second-order canonical form.
The adjoint variables, Ay, are the Cartesian components of the primer vector,
Ref. 2. The equations of motion written in the same form with the control
expressed in terms of the adjoint variables are

Ry - oL ’;—;—=o i=1,2,3 (3.13)
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where a = a,/(1 + bt)
Equations (3.12) and (3.13) are necessary conditions for an extremal arc.

Transversality Condition for Minimum-Time Rendezvous

The minimum-time problem can be formulated naturally as a Mayer-type
problem in the calculus of variations where it is desired to minimize a
function ¢ of the final boundary conditions. For the particular case at
hand, the function ¢ is merely the final time itself (or equivalently ¢ = Ct
where C is an arbitrary constant).

The general transversality condition at the final boundary is

i a" cos Q'i 7\1 X1
aep +:Z {_- M1 +bt TS |dt +§;A4du4 =0 (3.1k)
i

where the u; are the rectangular components of velocity. The position and
velocity of the body with which rendezvous is to take place can be described
parametrically in time.

£ (t) (3.15)

Xy

u = i‘x(t) (3.16)

Xy

The position and velocity components of the vehicle and the target body must
become identical at final time. Therefore, differentiating and substituting
equation (3.16) into equation (3.14) gives the final form of the transversality
condition.

o T3 | e (337
i

where the relations cos ¢ = él.and dep = Cdt have been used.
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If the rendezvous is taking place with a free-falling body (such as a
planet) each term of the summation in equation (3.17) is identically zero.
Since equation (3.17) must hold for any small variation of final time, the
coefficient of dt must vanish. This shows that the magnitude of the primer
vector can be arbitrarily scaled since C is an arbitrary constant. This
result stems from the fact that minimizing final time is identical to
minimizing any constant multiple of final time.

Equations for the Numerical Solution

The numerical solution of this system of differential equations with
two-point boundary conditions is achieved through the application of the
finite~difference Newton-Raphson algorithm. The detailed construction of
this algorithm for general systems is discussed in the next section. At
this point the actual algebraic expressions used to solve the equations
derived above are given.

Equations (3.13) and (3.12) form the basic system of six second-order
differential equations. The six conditions at the initial boundary are the
instantaneous position and velocity of a spacecraft, and the six conditions
at the final boundary are the time-varying position and wvelocity of a
massless target point moving in a three-dimensional Keplerian ellipse. The
final equation is the arbitrary scaling of the primer vector

p(0) =k (3.18)

Define %, = fy (from 3.13) and X, = g (from 3.12). Because of the
symmetry of the f; and g the Jacobian of these equations can be written
in terms of the following eight expressions.

ofy C 3% :

—={ 2 -1,

oxy LR /

of 3x,x

L= x; v, 14y,
ox,, r
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af‘ a \
5;=;5‘(P‘°' -3) (3.19)
at,
-a-k_=- =iy, 1#V,
v
Bgi ] 5x4 ~
2B _3 2 -5(—-—-1>'
va r5 l 1 1'2 %
% 3 /[ 5x1xvs\
g;: = 8 Aixy + A% - = ], 1 £V
\ /
9 of
_.g_1_=——1-, and _a;g_i_zafiyl#\),
a,  ox Ay 3xy

The form of this Jacobian allows a significant saving in the computational
storage requirement as is pointed out in the appendix of Ref. 1.

Equation (3.18) can be written as

2 M(0) = ¥, (3.20)
b
and the partial derivative with respect to each Ay (0) is trivial. In
addition, the partial derivative

df A
9y _ _ab e 8 (3.21)
ot (L+bpt) p

is also required. The only remaining derivatives with respect to time which
need to be considered at this point are those of the state of the target which
are well known.
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NUMERICAL SOLUTION OF THE NONLINEAR BOUNDARY VALUE PROBLEMS

This section gives the formal construction of the implicit, finite-
difference, Newton-Raphson algorithm for the numerical solution of systems of
ordinary differential equations with split boundary conditions. The generality
of systems considered will include all types encountered in this report. This
construction paraliels Ref. 1 up to the treatment of transversality conditioms.
The approach taken is to begin with a basic statement of the problem and
proceed to each extension of the method individually, instead of immediately
placing the entire problem in its most general formulation.

The Basic Problem
Consider, therefore, the system of equationms,
day

i .
— - fi(yl, SRR x)=0,1<i<m, (b.1)

defined on the interval,

with boundary conditions

y;(a) = o

; and yi(b) =B -

The fi are, in general, nonlinear eXxpressions, the only restriction on them
being that all their partial derivatives with respect to the yj; must exist. A
solution of this system is a vector CQY:(yl, o o ey ym) of functions of x which
satisfy the equations and boundary conditions on the given interval. (For
conciseness, vectors will be displayed as rows but should be interpreted for
computational purposes as column vectors.)

Clearly one can evaluate equations (4.1) for any vector of the proper form,
and if (P is taken to be the nonlinear operator defined by the system, the problem
can be stated as finding a root of the form 6;(‘30 = 0. The Newton-Raphson
iteration for finding roots of nonlinear, algebraic equations can be generalized
to handle such operator equations (Ref. 3). That is, given an appropriate
initial guess, or starting solution,akQ, the iteration



E-910350-11

M = Y - [© G0 I Ot (1.2)

1
where P is in some sense which we need not define here the "derivative" of @ s
will usually yield a sequence {’xk} which converges to the desired solution M .
The goal here is to write the iteration (4.2) for the system (4.1l) in a manner
which is numerically tractable. The notation can be simplified by defining
P = “Xk‘“‘ - “Kk and rewriting (L4.2) without the iterative subscript k as

-[6 18- Py . (4.3)

It is understood that § is the change in "X at the given step in the iteration.
Equation (4.3) will ultimately be written as a large, finite, matrix equation
vhere - [ @' (%) ] becomes a matrix, @ ('-8) the known right hand vector, and §
the unknown vector to be solved for.

To proceed, one now represents each function yi by its value at n points
xj, and yi(x ) will most often be denoted by yi j- The following notation will
now be useful. Y5 = (yij, - - -, ¥mj), and in this representation
=, ... Yn). us M has been reduced to an ordered mxm cuple of
numbers. (Note that it is a vector, not a matrix.) Similarly,
® = (D, - . -, Dy) where Dj is the vector of iterative charges at xj, and
using the vector function F = (fy, . . ., fy), it will become practical to
write @ = (P, . . ., Py). Fj will be used to denote F(¥j, x3)-

Initially, the points xj will be equally spaced according to the formula:

X, =a+ (3-1)n , (h.h)
where

h = (b-a)/(n-1) . (k.5)

Note that x; = a, and xn = b. However, a method will also be discussed
whereby the x j may be variably spaced according to some appropriate scheme.

Returning now to equation (4.1), the standard three-point formula,
- +
Vi3t Y

Yiso . s
balyyy) - R (4.6)

d?‘y.

is used to approximate the second derivatives, Combining (4.1) and

dxz

10
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(4.6) and using some elementary algebra, ome can now write the operator (P for
the given, discrete representation of “x:

Pl = (Qfl, o o ey am) -Yl,

- 2
Pj—Yj_l-EYj+YJ+1-hFJ., 2<j<mn-1, (&.7)
Po=(B1, - - -, B)-Y

r NOf
b1 D,

4
-1, 2I +h°F,, - I Dy

. .. H .
H
i
'

- H .

SU——
~
Hd
)
—

4
2 !
-I,2I +Xh Fj_l, -1 DJ_1 PJ._1
-I,2I +b°F,, -1 D, = P, 4.8
s 3 3 3 (+.8)
2

-1, 2I+hFj+1, -I Dj+1 Pj+1

O | |

2 T

-I, 21 +WF ., - I D, P,

I D P

IR L

e

1
I is the nxm identity matrix, and Fj are the Jacobian matrices

11
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ot ar)

1 ? ? aym
afm afm
T— 9y e - s T
oY1 oy,

evaluated using Yj and xj.

(4.9)

The matrix in equation (4.8), which can be denoted as - [_Gj(“t)], is a

special case of the general block tri-diagonal matrix

(Bl) C1

Az, By, Cp O

whose solution may be easily obtained by using the direct

W, = B;'Cy; W,

[}

B, - AW, )'c.
( J J J-l) hid

Q2
-
I

=B Py; G. = (B, -AW (P, - AG.
1 1> 3 (j Jj'l) (J JJ‘l),

followed by the back substitution

(4.10)

elimination formulas
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- . = - . -1> 3> U
D, =G; DJ. Gj WJ.DJH, n-1>32>1, (4.12)

¥
for the solution. For systems arising from variational problems - [ & (%})]
is known to be positive-definite in the vicinity of a solution of interest
(i.e., one not containing a conjugate point). This condition guarantees that
the inverses indicated in (4.11) exist, and that the system is well conditioned.
Notice, also, that the initial and final Dj may be eliminated from the system
prior to the application of formulas (h.lla and (4.12). Here, and in the
subsequent digcussion of transversality conditions, such a move is completely
appropriate.

Once a starting solution has been determined, the iteration (4.8) is
repeated until the element with largest absolute value in §J has been brought
below some reasonable epsilon. Due to the quadratic convergence of the Newton-
Raphson algorithm, this convergence criterion can usually be achieved in fewer
than ten iterations.

General Boundary Conditions

The simple boundary conditions considered for (4.1) are clearly not
adequate for the majority of problems. The next step in the construction of
the algorithm is to show how more general conditions can be handled. Trans-
versality conditions can be included at either boundary in a similar and
symmetric manner, and the analysis presented below in terms of the initial
boundary is easily applied to the final boundary.

Consider, therefore, the set of conditions

t 1
o (y1(2), « « ., yy(a), ma(a), - . ., yy(a),8) =0, 1<i<m (4.13)
The formula,
- Via, Y Vs
by (yyy) = —— (.14)

is used to evaluate these first derivatives to the same order of accuracy that
(L.6) brings to the second derivatives. However, applying (L4.14) at the initial
point a assumes knowledge of the functions y; at the point xo = a - h, and it

is necessary to introduce the quantities Yo = (yi1(a - h), + . ., ym(a - h)) and
the associated Do and Pp. Now (4.13) can be written, in a manner analogous to
that used above, as

13
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Q(Yu Yo, Y2, x;) = 0, (k.15)

and (4.8), the discrete form of @ , becomes

Po=§:

= - - n® <j<n -
Py=Yy, -+ ¥, -0F, 1<j<n-1, (k.16)

P =(Bl)"°:Bn)-Yn°

In order to have a sufficient number of equations to solve for the new unknowns,
Do, the discrete form the differential equations (4.1) must be also written at
the boundary, a. The matrix equation (4.8) is only affected in the upper rows;
which become

i 1 1 1 i ‘
' EO, ‘§1’ §-8 Do i Pg

1
-1, 2I + v®*Fy, -1 | D, = | P (4.17)

L
-I,2I +h®Fg, -1 Dg

o .
L S N U B

! .

. .
where the Ej are the Jacobian matrices {Ey_ll;} , 1 <4i, v <m, evaluated using

Y35 and xj. The matrix in (4.7) can be reduced to block tri-diagonal form
either by eliminating Dg or by considering the first two rows of subblocks as
one. Thus, the solution equations (4.11) and (4.12) still apply, and the
iteration can be carried out as above.

Additional Parameters

It is not unusual for a system of equations, especially those arising from
a variation problem, to depend not only on & vector of unknown fun: .Ions, ‘\é’ 3
but also on a vector of unknown parameters. Next, the case of including one
such unknown parameter into the construction of the algorithm will be treated,
and the extension to any number of such parameters can be made a similar fashion.

ik




-

E-910350-11

Consider, therefore, in lieu of (4.1), the system of equations

acy
i
- fi(YI} < e s Yo T x), 1<i, £m, (4.18)

where r is an unknown scaler parameter. It is immedlately obvious that an
additional constraint,

E(QX, I‘) =0, (h'l9)

is needed to define the system. What may not be so obvious is that g may not
depend on r at all. That is, r may enter the system completely through the fis
and g only serves to complete the definition of “\X

The analysis proceeds exactly as before except that the Jacoblan matrices
(4.9)are  now augmented by an additional column,

ofy | , af df \\
£, .., .,
7 &, (‘
t hd . {
F = . . < (4.20)
¥ . Ef_e/}
oyy ’ Ty, e/,

which necessitates changing the form of the matrix equation (4.8).

The following notation will be used to describe these changes. Define

af,
Rj = (hz-g;— 3 o o ey haf), 2<j<n-1,R; and R, are the vectors of
partial derivatives with respect to the boundary condition equations, and
® = (Ba, - - ., By). Define G, = (351 s o B ana Y- (G, . . -, G ).
m

(Note that G, and n are row vectors.) Also, define d, as the iterative change
in r at the X th iteration.

Thus, the matrix iteration including dr can be written as an augmented
version of (4.8).

15
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r 1 R, t' Dy ) [ Py
[y ]
Rz i+ D3 '= Pg
o .
R (k.21)
B |
R |1 D P
n i n n
| *
Sbod T .
P - 5
P - .

Equation Eh.gl) is solved by first using the previously defined method for the
matrix - [ @ (#%)] with multiple right hand sides. That is, AL and 4/ are
defined by the equations

J€EHIU-R wa - [@p[V-€. a2

which lead to, by elementary matrix algebra, the relations

a = @UWHY -8,

and (4.23)
p= V_udr *

Equations (4.23) become more complicated if dy is a vector, i.e., if there is
more than one unknown parameter, but in their present form the generalization
to that case is immediate.

Since most of the calculations in equations (4.11) and (4.12) involve the
matrix, it should be noted that there is a minimum of extra work required to
compute the two vectors, Q{ and Q/ . Also, in most cases, the vector ﬁ is
quite sparse, a fact which considerably simplifies the calculation of the
inner products in (4.23).

Variable End Points

A particular problem of interest, and one which requires further insight,
is the case where one of the end points, say b, is ltself an unknown parameter.
Any minimum time problem is such a variable end-point problem. Going back to

16
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equations (4.4) and (4.5), one sees that each value of the independent variable,
X3, and the mesh spacing, h, depend on b. Thus, if b is unknown, the only truly
independent variable remaining is the mesh point number j. However, once these
facts are realized, the analysis presented above is completely applicable. The
point of the matter is that every occurrence of x; and h must be considered as

a function of b when the elements of the vector @ are formed. This situation
gives rise to some complicated algebraic expressions, but no real problems.

Variable Mesh Spacing

The final consideration given here in the construction of the algerithm is
the inclusion of varisble mesh spacing. The attempt here is to formulate the
variable mesh spacing in a manner which allows all of the above analysis to
remain applicable. The spacing of the points where the functions y; are evalu-
ated is given by an arbitrary sequence {§ }. The relative spacing of the
elements of this sequence is preserved in the spacing of the actual X3 by the
formula

xy =8+ 'i'j(b/fc'n) , (4.24)
which now replaces (4.4). Similarly, one can define h, = x -x,,1<€3<n-1,
and write J dt J -7

n, = (%), - %) (b/%)) (4.25)

in place of (4.5). Equations (%4.6) and (4.19) are no longer valid and must be
replaced by the appropriate divided difference formulas,

2
hj_ithhJ_l + hj) Fij3a 31 313 P ByaVignl 0

"

b2(yy4)

and (4.26)

- 1 13 3 _ .2 3
w0y = e Ry (e T eyt BT -

It appears that the algebraic complications, especially those associated with
the variable end-point problem, have been increased; however, a little mani-
pulation can facilitate matters. Defining u = hy/hj,, v = (hy,; + h3)/bs_ s
and w = hj(hj Lt hj)/z, only w is a function of b, and

17T
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Wiad FENRILY TV

La(yy = (k.27)
Thus, the only change in equation (4.7) is
1>j=u3z3_1 -vYJ+YJ+1-wFJ, 2€j<n-1, (%.28)
and the general row of (%.8) becomes
- uDj_l + (v + WF;)DJ - 1)'j+1 = Pj . (4.29)

Therefore, the general,block tri-diagonal, form of the solution remains the
same when variable mesh spacing is introduced in the above manner.

18
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GUIDANCE FOR ILOW-THRUST INTERPIANETARY FLIGHT

The implicit finite-difference Newton-Raphson algorithm has been applied
to a guidance study involving a nominal 266-day minimum-time Earth-Mars tra-
jectory. The flight is assumed to take place in the solar central force
field and the two planets are assumed to be massless points. Initially the
optimim nominal trajectory and associated control were determined. Then a
sequence of arbitrary but physically possible guidance errors were assumed
at four points along the nominal trajectory corresponding roughly to 1/5,

2/5, 3/5, and h/5 of the total trip time. The resulting changes were obtained
and are presented herein.

The purpose of the guidance study is more to exercise and demonstrate
the capabilities of the algorithm rather than to explore the practical problems
of low-thrust interplanetary guidance in detail. However, the results of the
limited cases investigated are discussed in detail in order to establish a
credibility for these results.

In the algorithm the updating process takes place as follows: Suppose
the optimum trajectory and associated adjoint variables (i.e., the control
variables) from certain boundary conditions at time t, exist in the computer
and it is desired to update the trajectory to new boundary conditions at a
later time 4. (These new boundary conditions at tg will generally be the
state on the old nominal from t, at time t; plus an error vector due to the
fact that the nominal has not actually been followed as specified.) The
section of the old nominal from ty; to the final time, T, is used as a
starting approximation for the updated trajectory from the new boundary
conditions at tg. In this updating process the number of mesh points is
conserved. Therefore, it is necessary to interpolate between mesh points
on the old nominal since there are only (1 - t:/T) N mesh points in the
segment between tg; and T (where N is the total number of mesh points).

It may be that the required new boundary conditions at ty are suffi-
ciently remote from the nominal at this point that the Newton-Raphson
iteration cannot converge directly on the new solution. In this case, it
is necessary to repeat the updating process a number of times for a segquence
of smaller error vectors leading up to the required total error vector. It
has been the authors' experience that convergence can always be obtained if
small enough steps are taken, providing, of course, that the updated tra-
jectory is of the same class as the old nominal; e.g., it makes the same
rumber of circuits around the sun.

The density of updating points is somewhat arbitrary as far as the
algorithm is concerned. It is obvious that the longer the time interval
between updating points the larger will be the guidance errors involved.
One 1limit would be practically continuous updating so that only the initial
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control on each successive updated program actually would be followed.
Operationally, taking into account factors related to onboard computational
capabilities, accuracy of navigational equipment, and precision of thrusting
control, there probably exists a best spacing of updating points along the
trip. The results of this study show that the spacing certainly must get
finer as the trip progresses.

Numerical Accuracy Determination

Before proceeding tc the results of the guidance study, a few preliminary
results are presented to determine the numerical accuracy of the algorithm for
the particular problem at hand. PFigure 1 shows the resulting minimum total
time for the nominal Earth-Mars trajectory as a function of the number of mesh
points employed in the calculation. The scale on the right of the figure is
in days while that on the left is in T units which are the natural nondimensional
units of time used in the calculations and result from setting the gravitational
constant of the sun and the Earth's mean orbital radius each equal to unity
(11 = (2m)™! years). Both scales are greatly expanded.

The results of Fig. 1 indicate that about 200 mesh points are adequate
for this particular trajectory. The increase of trip time with increasing
number of mesh points beyond 200 is very small. Figure 2 shows the same
data plotted against mesh point spacing instead of number of mesh points.
This plot can be interpreted more generally than the previous one because
the number of mesh points is very closely connected with the particular
problem at hand, while the mesh point spacing is not. It can be said
generally that the mesh point spacing should be kept below about 2.5 x 1072 7
units.

Figure 2 indicates the sensitivity of the initial control to the number
of mesh points employed in the nominal 266-day Earth-Mars trajectory. Theta
(B) is the angle between the projection of the thrust vector unto the ecliptic
Plane and the direction of the vernal equinox. It will be referred to in the
subsequent text and figures as the in-plane steering angle or control angle.
Phi (@) is the out-of-plane angle between the thrust vector and the ecliptic
plane. 1In the figure, both curves approach their limiting asymptotes at
about 300 mesh points.

For any given problem, it is important to strike a good compromise
between machine time and accuracy. The machine time is directly proportional
to the number of mesh points. A good rule of thumb to follow is that an IBM
7094 computer can perform about 60 mesh-point iterations per second. Based
on the results of Figs. 1 and 3, 200 mesh points were used throughout the
Earth-Mars guidance study. It should be recalled that with each updating
of the trajectory, the accuracy of the algorithm improves since the same
number of mesh points are being put into a smaller time interval.
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The Nominal TraJjectory and Control

Figure 4.0 is an ecliptic plane projection of the nominal Earth-Mars
minimim-time constant-thrust trajectory and the associated thrusting program.
The vectors in the figure represent the instantaneocus acceleration on the
vehicle due to the constant thrust. They are drawn to a scale of 0.5 in. =
0.001 meter/sec2 and the directions of the wvectors correspond to the in-plane
steering angle, 6. In fact, the vectors shown in the figure are the ecliptic
plane projections of the computed three-dimensional thrust-acceleration
vectors. Because the trajectory is almost coplanar (it starts in the ecliptic
plane at Earth's orbit and comes up out of the paper until it has an altitude
of about four thousandths of an AU at Mars) the ecliptic plane projection
corresponds very closely to the actual trajectory and thrust-acceleration
vectors.

The different apparent lengths of the thrust-acceleration vectors in
Fig. 4.0 and the following figures are due to two causes: (1) When the vector
is appreciably out of the ecliptic plane, it appears to be shorter because of
foreshortening onto the ecliptic plane; (2) The thrust-acceleration vector
increases monotonically with time because the vehicle has constant thrust and
is losing mass.

It was assumed that the initial thrust acceleration of the vehicle is
5.337 x 1074 meters/sec“ and that the vehicle exhausts 1.090 x 10°® fraction
of its initial mass per kilosecond. These constants correspond to a specific
impulse of 5000 sec, a powerplant specific weight of about 19 kg/kw, and a
powerplant fraction of i.

The thrust-acceleration vectors are evenly spaced in time (every 13.3
days) along the trajectory and the marks on the orbits of Earth and Mars show
the positions of these planets at the respective times for which the vectors
are drawn. The date of departure from Earth is given in the figure as
244180 which is the Julian date corresponding to November 25, 1979.

The nominal trajectory of Fig. 4.0 is divided into three thrusting
phases. During the first phase from launch to about 120 days, the thrust
acceleration vector is pointed generally outward away from the Earth thereby
increasing the radial velocity. The second phase is a transition region
between the first and third phases. Beginning at about 120 days, the thrust
acceleration vector swings rapidly around clockwise until at 173 days it is
pointed almost exactly along the vehicle - Mars line of sight, directly away
from Mars. This situation persists during the entire third and terminal
phase of thrusting from 173 days to the end of the trip.

It is interesting to note that the relative velocity vector of the

vehicle with respect to Mars is practically along the line of sight between
the two points throughout the entire terminal phase of the trip. This
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orientation is not readily apparent from the figure, but it has been verified
by the numerical data. In the terminal region the respective positions of
the vehicle and Mars with respect to the sun are approximately the same so
that the nonuniformity of the gravity field does not produce much effect and
the situation could be approximated as occurring in a constant gravity field
or field-free space. To simplify the visualization still further, assume
that the thrust acceleration is constant. Then the guidance strategy in the
terminal phase is simply to negate the relative velocity v in the time to go,
T-t. For a given value of thrust acceleration, a, the velocity at the
beginning of the terminal phase must satisfy the relation v = a(T-t).

The control strategy for the real case in Fig. 4.0 is qualitatively the
same, that is,to maneuver the vehicle onto a collision course with Mars with
a relative velocity between the two when entering the terminal phase that
roughly satisfies the v = a(T-t) relationship.

The field-free analogue is very useful for a gualitative understanding
of the central force field case. Thus the whole trajectory and control of
Fig. 4.0 have the same qualitative characteristics as a minimm-time tra-
Jjectory between two moving points in field-free space. The first phase is
spent accelerating away from the first body while the terminal phase is
spent decelerating into the target body. A discontinuity in the middle
for the field-free case is translated into the transition region of the
central force-field case.

Although the absolute value of the primer vector magnitude is not
important, the relative change of the primer vector magnitude over the
trajectory indicates the relative importance of the thrust at a particular
point in the trajectory with respect to meeting the final boundary conditions
in minimum time. In other words, the relative magnitude of the primer vector
is a measure of the influence of the control on the payoff. Figure k.1
shows a time history of the nominal primer vector magnitude. It is not
surprising that the minimum value occurs in the transition region where
the thrust-acceleration vector is swinging rapidly around. If a coast
period were allowed, it would occur around the point of minimum primer
vector magnitude. As will be made clear by other primer vector plots,
the qualitative characteristics of the trajectory and control program are
very closely related to the time history of the relative primer vector
magnitude. Incidentally, in Fig. 4.1 and the remaining primer vector plots
the scale is always arbitrarily chosen for the initial point. While this
choice is theoretically completely arbitrary, some choices tend to reduce
roundoff errors more than others depending upon boundary conditions.

Figure 4.2 shows the time history of the in-plane and out-of-plane
steering angles for the nominal trajectory of Fig. 4.0. Although these are
the only control variables generated by the output of the algorithm and may
not be the most useful for a guidance system, they may be readily converted
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into any set of parameters that sufficiently define the control such as angles
with respect to vehicle-planet and vehicle-sun lines of sight.

Trajectory Updated at 53.2 Days
At 1/5, 2/5, 3/5, and 4/5 of the trip time, the trajectory has been up-
dated and various possible guidance errors assumed. These errors have been

assumed simultaneously in the six coordinates of the vehicle in phase space.
These errors change the initial boundary conditions as follows:

r' = (l+te)r; ¢' =@ + Tey; ©' = O + 2Meg (5.1)

Ho
!

Tz (A+e )T (r3)' = (1+es) Té;  (r sin ¢8)' = (l+eg) r sin ¢b  (5.2)

where the e's represent the errors, the unprimed terms denote the spherical
coordinates and velocity components of the previous nominal and the primed
terms denote the corresponding quantities including the error.

For comparison, Fig. 5.0 shows the nominal trajectory updated at 53.2
days. For the trajectory of Fig. 5.1, the following guidance errors were
assumed:

€, = -0.01%, e¢; = +0.01%, €3 = g = 65 = €g = -0.01%

Comparison of Fig. 5.1 and Fig. 5.0 shows that these guidance errors produce
no perceptible change in the control or trip time. In the following figures
the errors are increased, always keeping the magnitudes of all components
equal and the sign sequence unchanged. The errors indicated in the figures
are always with respect to the original nominal.

Figures 5.2 through 5.4 show the effects of 0.1, 1.0, and 2.0% errors,
respectively, on the trajectory and control program. The minimum trip time
increases from 266.5 days for 0.100% errors to 278.3 days for 2.0% errors.
The position errors show up in this sequence of figures in that the initial
point of the trajectory is moving back and in with respect to the mark on
the Earth's orbit indicating Earth's position at 53.2 days. The steering
program remains qualitatively the same although a perceptible change can be
seen in the figures, especially in the transition region.

Figure 5.5 shows a plot of the relative primer vector magnitude for
the nominal and for the 2.0% error. It is seen that the nature of the tra-
Jjectory does not change even for errors as large as 2.0% at 53.2 days. The
position of minimum primer vector remains essentially the same.
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The changes in the in- and out-of-plane control angles are shown in
detail by Figs. 5.6 and 5.7 for O, 1.0, and 2.0% errors. Although not readily
detectable in the trajectory figures, the required control changes are easily
seen in these two plots. Particularly noticeable is the growing spike
required in the out-of-plane control in the transition region as the errors
increase.

In summarizing the results for 53.2 days, it can be stated that large
errors result in only small increases in minimum trip time and small changes
in the control program except possibly for those changes required in the
transition region. This basic situation is believed to prevail, more or less,
for all updating points before the minimum primer vector point on the nominal
trajectory.

Trajectory Updated at 106.4 Days

The results for 106.4 days partially support the statement made above
depending upon what is meant by large errors. Again for comparison, Fig. 6.0
shows the original nominal updated at 106.4 days. Figures 6.1 and 6.2 show
the trajectories and control programs resulting from 0.0l and 0.10% errors
respectively. Neither set of errors result in much of a change in control
and the increase in minimum trip time is less than 0.05 days. For 1.0 and 2.0%
errors, however, the changes are significant as shown by Figs. 6.3 and 6.L4.
The minimum trip time increases to 270.9 and 280.7 days respectively. Also,
the transition region is moved back in time and the thrust-acceleration vector
swings around counterclockwise instead of clockwise.

Figure 6.5 shows the relative primer vector magnitude for O and 2.0%
errors. It is seen that the minimum primer vector point has been moved back
for 2.0% errors. This fact correlates with the observation of the earlier
approach of the transition region.

Figures 6.6 and 6.7 give detailed time histories of the in- and out-of-
plane steering angles, respectively. In Fig. 6.6 the change in rotation of
the thrust-acceleration vector between the nominal case and the 1.0 and 2.0%
error cases is plainly shown. Figure 6.7 shows that, starting from the
nominal case, a spike in out-of-plane steering angle grows in the transition
region up to 1.0% errors and then dies out again at 2.0%. This same effect
can be seen in Fig. 6.3 by observing theshort length of the ecliptic-plane
projection of the third thrust acceleration vector. A physical explanation
of this phenomenon is not readily forthcoming, except to say that it is
necessary to satisfy the new boundary conditions.
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Trajectory Updated at 159.6 Days

After the point of minimum primer vector magnitude on the nominal ftra-
jectory which occurs at about 2.5 T's = 145.5 days, the updated trajectory and
control become very sensitive to guidance errors. Whereas in the initial
phase of the trajectory errors as large as 0.10% did not cause appreciable
changes to occur, in the terminal phase errors as small as 0.0005% can cause
very large changes in the control as will be demonstrated subsequently.

This fact is not surprising if a corresponding one-dimensional field-
free case is analyzed. Suppose that a constant thrust-acceleration vehicle
is directly approaching the target body with a relative velocity given by
the relation v = a(T-t) and relative position by r = 4 a(T-t)?. In this
case, the control program is simply a rearwardly directed constant thrust
acceleration. Such a program results in a linear decrease of velocity with
time approaching zero velocity at final time T when the relative position is
also zero. Eliminating time, the above relations can be expressed by the
single equation v? = 2ar. Now suppose that due to a guidance error the value
of v® is very slightly less than 2ar. It is evident that in this case at the
initial point in the trajectory a small amount of forward thrust acceleration
will be required to increase the velocity to satisfy the relationship and thus
to achieve rendezvous in minimum time, Hence, a very small guidance error
would produce a large change in the control at the initial point.

Consider then the other case of v© very slightly greater than 2ar. In
this case the vehicle will go through the target point at a finite velocity
even though the thrust acceleration is directed backward the whole way.
Nothing can be done to prevent this in this one-dimensional case. If the
backward thrusting program is maintained, at some point just slightly beyond
the target the relative velocity will be reduced to zero. Now the problem
has been reduced to that of rendezvous in minimum time between two points
at rest with respect to each other. The proper control program is obviously
to maintain the thrust acceleration in the same direction until half the
distance has been traversed and then turn it around in the opposite direction
in order to come to rest at the target point. In this second case, a very
small guidance error causes a large change in control at the final point of
the trajectory.

Getting back to the central force-field case at hand, there are a number
of factors which cause the situation to be more complicated than the simple

case just discussed:

1. The thrust acceleration is not constant but linearly increases
with time;

2. The trajectory and control have three degrees of freedom instead
of one; and,
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3. The small difference in the gravity force on the target and vehicle
causes a warping of the stright-line relative trajectory of the
field-free case.

These factors, however, are not important enough to destroy a qualitative
similarity between the two cases. This similarity will be readily apparent
in the results yet to be presented.

Again for comparative purposes, the original nominal trajectory is shown
updated at 159.6 days with zero error in Fig. 7.0. Figures 7.1 and 7.2 show
the results for 0.002 and 0.003% errors. There are no apparent changes.
Figures 7.3, 7.4, and 7.5 show the results for 0.0042, 0.0046, and 0.0050%
errors respectively. Note the increasing large change in the control at the
final point caused by these small errors.

The original nominal trajectory has a value of v2/2ar ~ 1 throughout the
terminal region (where v and r are the relative velocity and radius of the
vehicle with respect to Mars) and the relative velocity vector is pointed
from the vehicle directly toward Mars. Based upon the discussion of the one-
dimensional field-free case, therefore, it is suspected that the assumed
guidance errors make v2/2ar > 1. Such is found to be the case for € =
+0.0042 and ¢, = €3 = 64 = €5 = €g = -0.0042, for example. By far, the most
important error is eg, the error in in-plane circumferential velocity. The
quantity eg, being negative, contributes to an increase of the relative
velocity of the vehicle with respect to Mars. Of course, the radius of the
vehicle with respect to the sun decreases (e, is negative) and since the
vehicle is inside Mars orbit the vehicle-Mars distance also increases as a
result of these guidance errors. A detailed inspection of the numbers, how-
ever, shows that the velocity error dominates, thereby causing va/zar to
become greater than its nominal value. (Actually, the nominal value is a
little greater than unity since the thrust-acceleration is not constant,
but increasing with time.) The fact that the velocity error dominates in
the term v2/2ar is not surprising since the velocity is squared.

The results of the algorithm are in gualitative agreement with the
field-free case. The trajectory does not go through the target and then
come back as the one-dimensional field-free case was constrained to do
(although this situation is not excluded in the mathematics of the central
force-field case). The direction of approach to the Martian "massless point"”
is completely altered as shown by Figs. 7.3, 7.&, and T7.5.

Figure 7.6 shows the resulting time histories of the primer vector
magnitudes corresponding to the nominal 0.002, 0.003, 0.0034, and 0.005%
errors. It is seen that the character of the thrusting program does not
alter for errors less than 0.003% in that the primer vector magnitude is an
increasing monotone. Above 0.003% errors, the primer decreases until at
0.005% a new minimum is observed just before the final point. It is
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interesting to observe the similarity of the behavior of the final control
for 0.005% errors with that of the nominal at the primer vector minimum in
the transition phase.

Detailed plots of the time histories of the in- and out-of-plane control
angles for O and 0.00S% errors are shown in Figs. 7.7 and T7.8.

Trajectory Updated at 212.9 Days

The only change that is observed as the terminal phase progresses is that
the sensitivity of the control to guidance errors becomes even more acute.
Where 0.005% errors served to change the control significantly at 159.6 days,
at 212.9 days only 0.0005% errors suffice to cause a significant change.

Figures 8.0 through 8.3 give the by now familiar seguence of trajectory
plots and thrust-acceleration vectors. Again, the same change of control
occurs at the end for 0.0005% errors, and it has been confirmed that the
errors produce an increase of v2/2ar from the nominal value.

Figure 8.4 gives the time histories of the primer vector magnitudes
associated with the nominal trajectory and those resulting from 0.0001, 0.0002,
0.0003, and 0.0005% errors. Again, the transition from increasing to decreasing
monotones is observed. Figures 8.5 and 8.6 show detailed time histories of
the in- and out-of-plane control angles for O and 0.0005% errors. These
plots are very similar to those of Figs. 7.7 and T7.8.

Trajectory Updated at 200 Days with Errors
in Heliocentric Radius Only

A negative error in heliocentric radius only, keeping the same velocity
(i.e., ¢ = - ( ), e, through e¢¢ = 0), produces a decrease in the parameter
v2/2ar. The one-dimensional field-free analogue indicates that there should
be a large change in the control in the initial section of the trajectory.
Figure 9.0, which shows the initial in-plane steering angle plotted against
the percent change in heliocentric radius, verifies this prediction. A
heliocentric radius decrease of 0.0l% produces a change in angle of about
80 deg. That the radius decrease affects only the initial steering angles
is shown by Fig. 9.1 which gives the time histories for 0, -0.006, and
-0.010% heliocentric radius errors.

An attempt was made to correlate the results presented by Figs. 9.0 and
9.1 quantitatively with nondimensional plots presented in Ref. 3, which
treats the problem of terminal guidance in field-free space for a constant
thrust-acceleration vehicle. A satisfactory correlation was not obtained.
Reference L, however, does predict a high sensitivity of the control with
respect to the initial boundary conditions for v*/2ar < 1.
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PLANETOCENTRIC NOMINAL TRAJECTORIES

The effort in planetocentric trajectory analysis did not progress to the
guidance stage, but was necessarily limited to attempts to establish a nominal
minimum-time trajectory with the associated control.

If the low-thrust guidance problem were treated in two distinct parts,
involving a planetocentric phase where only the effect of the planet is
included, and an interplanetary phase where only the gravity field of the
sun is considered, the nominal trajectory could be established as follows:
First, a somewhat arbitrary spherical surface is defined (sphere of influence)
on which the two trajectories are to be joined. Next, the minimim-time inter-
Planetary trajectory is determined, not with orbiting points to represent the
Pplanets as in the preceding section, but with boundary conditions on the
spherical surfaces surrounding the planets. The boundary conditions should
include transversality conditions which express the desirability that the
trajectory pass through the optimum point on the spherical surface with a
fixed speed in the optimum direction. Since the two trajectories are treated
separately, a parametric search is necessary to determine the optimum speed
for a given propulsion system.

The boundary conditions for the planetocentric trajectory are a given
initial position and velocity and the final position and velocity as dictated
by the interplanetary trajectory. The initial boundary conditions would
generally correspond to a point in a low-altitude circular orbit with a
velocity increment due to a preliminary high-thrust impulse. If the initial
boundary conditions corresponded to circular velocity, with no initial high-
thrust velocity increment, the trajectory would cover many revolutions and
would require considerable time since the low-thrust thrust-to-weight ratio
is of the order of 107%. Of course, if the initial high-thrust velocity
change is /2 times the original circular velocity, the trajectory will be
an escape parabola which will not be modified much by the use of low thrust
since the time would be short for this case.

Method of Establishing Nominal Trajectories

For Earth, the planetocentric trajectory should include a radius ratio
of about 1/120, i.e., the spherical surface on which the planetocentric and
heliocentric trajectories are matched should have a radius of about 120 times
that of a low-altitude circular orbit. The sequence for establishing a
nominal minimum-time trajectory between these two radii proceeds as follows:

1. An escape parabola is computed with a periradius of 1.0 and a

perivelocity of 1.414 where these numbers are in units of the
radius and velocity of the initial circular orbit. Position and
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velocity vectors are determined at 500 points, equally spaced in
time along this parabola from the periradius to the given final
radius R, corresponding to 500 mesh points used in the algorithm.

The coasting parabola is used as a starting approximation for a
variable-thrust trajectory between the two radii with the time
specified to be somewhat less than that required by the parabola.
In this calculation the transversality conditions,

x, =2 M 1=1, 2,3 (6.1)
P
and
Ay =0 i=1,2,3 (6.2)

are employed where the x, are the final position coordinates, the

A, are the corresponding adjoint variables (components of the primer
vector), P is the primer vector magnitude, and R is the given final
radius. These transversality conditions analytically express the
fact that, at this stage, only the final radius is specified while
the direction of the final radius vector and the final velocity are
completely open and are to be optimized.

The variable-thrust trajectory now serves as a starting approximation
for a constant-thrust trajectory with the same boundary conditions.

It is necessary that the values of initial thrust acceleration and
mass flow rate specified for the constant-thrust trajectory be
compatible with the time specified for the variable-thrust trajectory.

Next, the initial velocity is decreased in steps from the original
1.414% down to the desired value between 1.0 and 1.414. In this
sequence, the converged trajectory and adjoint variables for the
previous initial velocity serve as a starting approximation for
the next. Because the direction of the final position vector is
always open, the end point of the trajectory swings around as the
initial velocity is reduced and the trajectory winds up like a

spring.

At this point there exists in the computer a coplanar constant-thrust
minimum-time trajectory with the prescribed initial boundary con-
ditions, but it probably does not reach the proper final boundary
conditions. A final tracking sequence is reguired to change the
final boundary conditions to the prescribed values.
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Two examples from the sequence described in (4) above are shown in
Figs. 10.0 and 10.1 for a nominal radius ratio of 1 to 30. (A ratio of 1
to 120, previously indicated to be required for Earth escape, proved to
be unattainable due to the difficulty of accommodating enough mesh points
to adequately describe the trajectory.) The assumed initial thrust-to-
weight ratio for the sample problem is 0.0015. The initial tangential
velocity is 1.35 in Fig. 10.0 and has been reduced to 1.34% for Fig. 10.1.
This small reduction in initial velocity causes the final point to move
counterclockwise approximately 30 deg and the time to increase from 176.3
to 224.9 (in units of the time it takes a point in the initial circular
orbit to move through one radian).

Machine Storage Problems

The procedure outlined sbove and illustrated by Figs. 10.0 and 10.1 is
limited in practice by the storage capacity of the computer. In fact, the
500 mesh points employed in the algorithm to praduce the trajectories of
Figs. 10.0 and 10.1 practically fill the entire core storage capacity of an
IBM 7094 computer.

Another problem is that the mesh points are evenly spaced in time. Since

the vehicle is moving very rapidly at the beginning and slowly at the end,
this situation results in very low mesh-point density initially, where the
curvature is largest, and a high mesh point density toward the end, where
the curvature is least. It might seem that mesh point spacing which is
weighted toward the beginning of the trajectory would solve this problem.
As the trajectory is wound up into one or more revolutions, however, the
radius becomes oscillatory with time. In this situation only a variable
mesh point spacing scheme such as the one presented in the next section
will suffice.

In conclusion, it can be stated that the finite-difference Newton-
Raphson algorithm with the tracking sequence just presented can, in principle,
determine low-thrust planetocentric spiraling trajectories, but not with
restrictions of both in-core storage and constant mesh-point spacing.
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TIME-VARYING GRAVITY FIELD

The traditional way of analyzing the low-thrust interplanetary trajectory
problem is to consider the vehicle to move in a sequence of central-force
fields generated by the most influential body at each point in the trajectory
and employing patching at spheres of influence or asymptotic matching. 1though
this method 1s certainly adequate for purposes of mission analysis, its vali-
dity is perhaps open to question for the more demanding functions of guidance
and control. Of course, for the majority of time on the interplanetary trip,
the influence of the planets is very weak compared to that of the sun and
the solar central-force field is an extremely good approximation. However,
there exist regions in the vicinities of the initial and target planets
where the respective gravity accelerations due to the sun and planet are
of the same order of magnitude. An examination of the nominal trajectory
of Fig. 4.0 will show that at both ends of the trip a comsiderable amount
of time is spent in these regions where the planetary effect is not negligible.

It was pointed out in the last section that the terminal phase of the
interplanetary trajectory is a very critical one with small guidance errors
corresponding to large required changes in control. Since a large part of
the terminal phase takes place in the proximity of the target planet, it is
not unreasonable to assume that the inclusion of the planet's gravity field
in the problem model would have a significant influence on the resulting
control.

For these reasons, the problem was originally formulated for a time-
varying gravity field including the contributions from the initial and target
planets as well as the sun. All of the bodies were considered to be point
masses and the planets were assumed to be in constant Keplerian orbits about
the sun.

Two analytical difficulties forced the abandonment of this approach in
view of the limited time available for the study. The first was due to
orders of magnitude difference between interplanetary and planetocentric
distances. The second was the requirement of variable mesh point spacing to
insure a high mesh point density in regions having a large gravity field
gradient. Before this approach was abandoned, however, the variational
equations had been derived, a variable-mesh finite-difference Newton-Raphson
algorithm had been coded, and convergence was achieved for a minimum-time
constant-thrust trajectory between two sets of boundary conditions which
were both well away from any planetary singularities in the gravity field.
Despite the fact that the planetary perturbation was weak in the region of
the converged trajectory a difference in control was noticed as compared to
the corresponding solution for the same boundary conditions without the
planetary perturbations. Although this program is still in a development
stage, a brief description of the problem formulation will be given.
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Variational Equations

For the case of a time varying gravitational field generated by m point
masses whose positions (x,J, X3y, xaj), 1= J<m are known functions of
time, equations (3.13) and(3.12) can be generalized into the following simple
form:

)
ce ax .
x -2 +§:“tha=o, i=1,2,3 (7.1)

P 3
J=1 ot
/

- -~ W s
X, - .i(éﬂ_i-xt;=o 1=1,2,3 (1.2)

i=1

tional constant ofsthe jthébody (i.e., point mass),
A1Qyy, and Ty = (T qfd)ll. X; is the ith coordinate
=1

where py is the gravita
Qg = X3 - X34, Sy E%
t=1

of the vehicle and x;, is the ith coordinate of the jth gravitating body.

The terminal transversality conditions can take the form of optimal entry
into an orbit, or even optimal entry into a parametric family of orbits, about
the target body. However, for simplicity in numerical experiments to date,
this condition has been fixed as entry into a specified orbit at a specified
point. The arbitrary scaling of the primer vector remains valid as in the
fixed-field problem.

Equations for the Numerical Solution

Since the knowledge of the qq, for any j completely defines the system, it
is advantageous to choose a particular j, call it J, and write equation (7.1)
with respect to the Q7. Therefore, define qj = f; and Xy = g; where

al By q .
f‘ =_L - Z $3 -X‘:; (7-3)

Y r3
=1

-

and g, is determined by equation (7.2).

The elements of the Jacobian follow the pattern of equation (3.19)
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There is no change in the scaling equation (3.18), but equation (3.21) becomes

LA B Y (1.5)
3t (1+bt) p

Numerical Problems

It is fairly clear that the nature of the solution is going to change in
the vicinity of the different bodies. For this reason, both the ability to
change J at several points in the solution and the means to handle variable
mesh spacing is required. These problems have been attacked, but have not
been overcome. Recently, Breakwell and Rauch (Ref. 5) have published a mixed
analytical and numerical solution to the three mass-point, variable specific-
impulse, optimum-rendezvous problem. This solution is interesting in two
respects: First, knowing the general nature of the solution alleviates the
numerical problems. Second, the variable specific-impulse problem offers
somewhat simpler and more stable equations for numerical experimentation.
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The basic approach taken to date has been to choose J such that rﬁ /u,J
is a minimum over all j at every point. In addition, the mesh point spacing
is made proportional to r?‘/p.j. It appears that the basic difficulty of this
approach is the severe discontinuity in the gradient of this function at
the points where Jj changes value.
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RECOMMENDATIONS FOR FURTHER RESEARCH

The results of the present study have indicated a number of problems
which in the authors' opinion warrant further investigation.

It is generally felt that while the present effort has developed an
excellent numerical algorithm for use in low-thrust guidance problems, it
still remains to exercise the algorithm in a systematic way in order to gain
a basic understanding of practical problems of low-thrust guidance and control
in a central-force field, especially in the terminal phase. A very general
situation such as rendezvous wWith a point in a circular orbit should be
studied and the optimal control from all points in the neighboring region
of phase space determined. Perhaps from such a study, simple semi-empirical
and/or semi-analytical terminal low-thrust guidance laws could be formulated
and compared with the results of the numerical algorithm,.

One question that is raised by the extreme sensitivity of the control
to small guidance errors in the terminal phase is whether low-thrust systems
with a very narrow range of available control can achieve rendezvous
unassisted. This question is by no means academic.

Since there is no space nuclear-electric powerplant currently being
developed of sufficient capacity to provide prime power for an electric pro-
pulsion system, the only hope for low-~thrust systems in the near future is
the use of solar power. Whether solar energy is employed to heat a working
fluid or the solar radiation is converted directly into electrical energy, these
devices will require large expanses of material to intercept the sunlight.

Due to the large moments of inertia and stability problems of these vehicles,
the thrust-attitude control probability will be severely limited. In fact
the current thinking is in terms of constant thrust-attitude control.

It is recommended, therefore, that an interplanetary guidance study be
undertaken for a vehicle constrained to direct its thrust throughout a very
small solid angle. Such a problem would involve inequality constraints which
would be difficult to handle but probably not impossible with a modification
of the present algorithm.

Perhaps as a requirement for actual low-thrust guidance, or at least as
a complete solution to the realistic problem to which other less sophisticated
guidance schemes should be compared, the time-varying field analysis started
in this study should be continued.

Finally it is believed that all that is required to solve the planetocentric
problem is the use of variable mesh point spacing and storage outside of core.
Since machine time would not be of prime consideration in a real-time, on-board
computer application, external storage might be feasible.
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